36 Purvis Street #02-07
Singapore 188613
36 Purvis Street #02-07
Singapore 188613
36 Purvis Street #02-07
Singapore 188613
36 Purvis Street #02-07
Singapore 188613
36 Purvis Street #02-07
Singapore 188613
36 Purvis Street #02-07
Singapore 188613
47001 Port Street
Plymouth Michigan 48170
47001 Port Street
Plymouth Michigan 48170
47001 Port Street
Plymouth Michigan 48170
#104-201, 121 Gwanak-daero
Dongan-gu, ANYANG Gyeonggido 13922
201 Krishna Ashirwad Society
Shrikhande Wadi, Dombivli, Maharashtra 421201
201 Krishna Ashirwad Society
Shrikhande Wadi, Dombivli, Maharashtra 421201
No. 118. Jinqiao Road
Pudong District, Shanghai 201206
Östra Storgatan 9
55421 Jönköping
Östra Storgatan 9
55421 Jönköping
5/12, building 2, floor 3, office 232A Zelenyi prospect
111141 Moskau
970 Chemin de la Lecque
13760 Saint-Cannat
970 Chemin de la Lecque
13760 Saint-Cannat
Via Zanica 64
24126 Bergamo
Seckenrain 34
69483 Wald-Michelbach
M-501 km 56 Apdo.: 08
San Martín de Valdeiglesias 28680
M-501 km 56 Apdo.: 08
San Martín de Valdeiglesias 28680
Berghagan 7
N-1405 Langhus
Berghagan 7
N-1405 Langhus
Berghagan 7
N-1405 Langhus
Via Zanica 64
24126 Bergamo
Am Throms Garten 7
35392 Gießen
Am Throms Garten 7
35392 Gießen
Am Throms Garten 7
35392 Gießen
Am Throms Garten 7
35392 Gießen
Am Throms Garten 7
35392 Gießen
Am Throms Garten 7
35392 Gießen
Seckenrain 34
69483 Wald-Michelbach
Marktplatz 9
90542 Eckental
Heckenstr. 17
41849 Wassenberg
Schulstr. 20
35260 Stadtallendorf
Marktplatz 9
90542 Eckental
Marktplatz 9
90542 Eckental
Seckenrain 34
69483 Wald-Michelbach
Nisseki Yokohama Building 18F 1-1-8 Sakuragi-cho, Naka-ku
Yokohama, 231-0062
Schulstr. 20
35260 Stadtallendorf
Schulstr. 20
35260 Stadtallendorf
Schulstr. 20
35260 Stadtallendorf
Schulstr. 20
35260 Stadtallendorf
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
R. Canuma, 192
04642-040, São Paulo - SP, Brasil
Kleine Alexanderstr. 11
Berlin
Kleine Alexanderstr. 11
Berlin
Kleine Alexanderstr. 11
Berlin
Kleine Alexanderstr. 11
Berlin
47001 Port Street
Plymouth Michigan 48170
Bei der Auswahl der Gegenwerkstoffe muss der Betriebseinsatz und vor allem das Betriebsmedium beachtet werden, in dem der Gegenwerkstoff und das Gleitlager zu arbeiten haben. Die deva.metal® Gleitlager sind grundsätzlich für die aufgegebenen Bedingungen korrosionsfest ausgewählt. Sie können aber ihren Korrosions- und Rost-Schutz nicht auf den Gegenwerkstoff übertragen. Dieser Punkt muss immer dann beachtet werden, wenn Rostgefahr oder Korrosions-Gefahr besteht (beispielsweise beim Arbeiten der Gleitlager in feuchter Luft, in Wasser oder in der Wechselzone Luft-Wasser). In solchen Fällen empfiehlt es sich, einen nichtrostenden Stahl einzusetzen. Der Werkstoff Nr. 1.4057 (X 22 Cr Ni 17) reicht in der Regel für normale Anforderungen an Rostbeständigkeit aus. Günstige Voraussetzungen in Bezug auf Laufeigenschaft, Bearbeitung und Vergütung bietet der Werkstoff Nr. 1.4122 (X 35 CrMo 17).
Wird kein besonderer Korrosionsschutz des Gegenwerkstoffes vorgesehen; so kann nur durch die Kombination nichtrostender Stahl mit dem Deva Gleitlager eine wartungsfreie Lagereinheit erreicht werden.
PFAS ist eine Abkürzung für per- und polyfluorierte Chemikalien. PFAS kommen nicht natürlich vor und werden erst seit den späten 1940ern hergestellt und eingesetzt.
Blei diente früher zur Verbesserung der metallischen Laufeigenschaften. deva.metal®-Werkstoffe wurden und werden teilweise noch unter Zusatz von Blei-Pulver hergestellt. Neue Legierungen kommen inzischen ohne Blei aus. Blei gilt als gesundheitsschädlich. Desweiteren bewirkt es in deva.metal® eine Kornveränderung. Lesen Sie hier.
Die trocken arbeitenden Gleitteile binden keinen Schmutz und sind daher unempfindlicher gegenüber Verunreinigungen als normal geschmierte Gleitteile.
Ja, eine Reparatur von dg-Stopfen in deva.glide ist möglich.
Bei Gleitlagern mit Presssitz stellt sich der tatsächliche Innendurchmesser des Gleitlagers erst nach der Montage ein. Dünnwandige Lager wie deva.bm® oder ...
Eine Reinigung mit rückstandsfreien, fettlösenden Mitteln (z.B. Loctite 7063) ist zulässig. Weitere Informationen hier.
Alle Infos wie und wo Deva Gleitlager am besten zu lagern sind.
Die Definition eines verschlissenen Lagers ist abhängig vom Gleitlagertyp und den Anforderungen aus der Anwendung.
Wenn Grund- und Gegenkörper aus dem gleichen Material bestehen spricht man von einer Eigenpaarung. Solche Reibpaarungen ...
Nach Czichos ist die Tribologie „ein interdisziplinäres Fachgebiet zur Optimierung mechanischer Technologien durch Verminderung reibungs- und verschleißbedingter Energie- und Stoffverluste.“
Die Flächenpressung ergibt sich aus der Normalkraft dividiert durch die projizierte Kontaktfläche.
Die Normalkraft wirkt rechtwinklig zu den Reibflächen und ist Bestandteil des Reibungsgesetzes von Coulomb.
Der Reibwert bzw. die Reibungszahl μ ist abhängig von der Normalkraft. Bei polaren Reibpaarungen ist der adhäsive Anteil der Reibungszahl aufgrund der Anziehung der Reibfläche bei geringer Normalkraft sehr hoch.
Der Grundkörper stellt das Gleitlager dar. In den meisten Gleitpaarungen ist der Grundkörper das verschleißende Bauteil.
Der Gegenkörper oder Gegenwerkstoff ist sehr häufig ein Stahl. In den meisten Gleitpaarungen darf der Gegenkörper nicht verschleißen.
Die Gleitverschleißrate (µm/km; Materialabtrag in µm je km Gleitstrecke) verhält sich oft proportional oder exponentiell zur Normalbelastung.
Glättung der Oberflächenrauhigkeiten bei neuen Gleitpaarungen und Formierung eines Transferfilms zur Reib- und Verschleißminderung.
Hierbei werden die Gleitpartner durch einen flüssigen Schmierfilm vollständig voneinander getrennt.
Schmierzustand, bei dem teilweise Festkörperreibung neben hydrodynamischer Schmierung besteht.
Wird durch Festschmierstoffe erreicht, wenn bei Fett- oder Ölschmierstoffen Mangelschmierung auftritt.
Tritt bei unzureichender Trennwirkung des Schmierstoffs bzw. Transferfilms (dritte Körper) auf, da die Anfangsreibung höher ist als die Bewegungsreibung.
Der Transferfilm oder auch dritte Körper genannt bildet sich während des Betriebs als eine Oberflächenschicht, insbesondere auf dem Gegenkörper aber auch auf dem Grundkörper.
Ein tribologisches System besteht im Wesentlichen aus einem Grundkörper (Probe) und einem darauf gleitenden Gegenkörper (Gegenwerkstück).
Feststoffschmierstoffe werden wegen ihrer kristallinen Struktur dann eingesetzt, wenn Flüssigkeits- (Schmieröl) oder Halbfeststoffschmierstoffe (Schmierfett) versagen.
Wartungsfreie Gleitlager sorgen für eine selbstständige Schmierung, sodass keine Nachschmierung per Hand mehr erforderlich ist.
Durch die Trockenschmierung werden die Gleiteigenschaften von Gleitlagern, Dichtelementen und auch anderen Maschinenelementen verbessert.
Die Aufgaben eines Lagers sind eine möglichst geringe Reibung sowie eine verschleißfreie und präzise Führung von Maschinenteilen.
Eine einwandfrei funktionierende Schmierung stellt viele Anforderungen an die Konstruktion und die Sorgfalt des Anwenders. Dabei ist die Schmierung doch häufig nicht wegzudenken.
Hier erhalten Sie alle relevanten Informationen zum Einbau von deva.bm® Gleitlagern durch Einpressen.
Hier erhalten Sie alle relevanten Informationen zum Einbau von Gleitlagern mittels Unterkühlung durch Stickstoff oder Trockeneis. Es wird die Schrumpfung thematisiert, als auch Einschränkungen und Limitierungen.